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Abstract. The aim of this paper is to develop the general generic stability theory for nonlinear com-
plementarity problems in the setting of infinite dimensional Banach spaces. We first show that each
nonlinear complementarity problem can be approximated arbitrarily by a nonlinear complementarity
problem which is stable in the sense that the small change of the objective function results in the small
change of its solution set; and thus we say that almost all complementarity problems are stable from
viewpoint of Baire category. Secondly, we show that each nonlinear complementarity problem has,
at least, one connected component of its solutions which is stable, though in general its solution set
may not have good behaviour (i.e., not stable). Our results show that if a complementarity problem
has only one connected solution set, it is then always stable without the assumption that the functions
are either Lipschitz or differentiable.
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1. Introduction

The complementarity theory is dedicated to the study of complementarity problems
- which is fundamental to the study of many optimization problems and the analysis
and computation of equilibria in the physical and economic sense. It is well known
that the complementarity theory has also many and remarkable applications in En-
gineering, Elasticity, Mechanics, Game Theory etc. $bkition sebf a comple-
mentarity problem can bemptyor non-emptystableor unstable. In this paper, our
principle aim is to study the stability of solutions for nonlinear complementarity
problems without the traditional assumptions suchigschitzor differentiability
conditions on the functions by introducing a new concept caeskntial solution
which reflects the stability of solutions for complementarity problems.

We recall that a general nonlinear complementarity problei®irs described
as follows: Letf : R* — R”" be a continuous mapping arid C R” be an acute
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convex closed cone with its vertex at the origin. Denotedkbythe dual cone
for K,i.e, K* ={y € R" : (x,y) > Oforallx € K}. The general nonlinear
complementarity problem (denoted ByYNC P(f, K)) is to find a vectorx € K
such that

f(x)e K* and (x, f(x))=0

where(, -, ) denotes the inner product Bf'.

By introducing a notion calleégxceptional family, the characteristic for the
existence of solutions for the generalized nonlinear problems has been established
recently by Isac et al. [6, 7] (see also Bulavski et al. [1]). As applications, many
general existence theorems of complementarity problems have been given which
unify and improve corresponding existence theory of complementarity problems
in the literature. For more details, see books of Hyers et al. [4] and Isac [5] and
related references therein.

Throughout this paper, Ik be a non-trivial closed convex cone in a Banach
spaceE and f : K — E* a continuous mapping unless specified. We denote by
SGNCP(f, K, D) the solution set which is contained in a non-empty subbset
K for the (nonlinear) complementarity probledWC P(f, K), i.e.,

SGNCP(f,K,D) :={x € D(C K): f(x) € K*and(x, f(x)) = O}.

We first note that as a special case of Theorem 4.3.2 of Isac [5, p. 116], the fol-
lowing existence result for generalized nonlinear complementarity problem holds.

LEMMA 1.1 (Karamardian).Let K be a non-empty closed and convex cone of a
Banach spacé and D be a non-empty compact subsetkof Supposef : K —

E* is a continuous mapping such that for eack K \ D, there existy € D such
that (x — y, f(x)) > 0. Then all solutions oG NC P(f, K) are contained inD,

i.e., SGNCP(f, K, D) is anon-empty and closed subset/nf

2. The generic stability of nonlinear complementarity problems

The stability study of solutions of nonlinear complementarity problem is an im-
portant topic in complementarity theory. In this section, our aim is to develop
the generic stability of solutions for generally nonlinear complementarity problem
GNCP(f, K) as introduced in Section 1 under the setting of infinite dimensional
Banach spaces.

Let K(E) be the space of all non-empty compact subsets of a metric space
(E,d) (e.g, the Banach spacé, || - ||)) equipped with the Hausdorff metric
which is induced by the metri¢ (resp., the nornj - ||). For anye > 0,xg € E
andA € K(E),letU(e,A) = {x € E : d(u,x) < eforsomeu € A} and
O(xg,€) ={x € E :d(xp,y) < €}.
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Let Y be a topological space and we denote BytRe family of all subsets
of Y. We recall that a subse®? C Y is called aresidual set if it is a countable
intersection of open dense subsetsrofLet X andY be two topological spaces
andF : X — K(Y) be a set-valued mapping. Théhis said to be usco iF is
upper semicontinous with non-empty and compact and convex values.

We now have the following result which is Theorem 2 of Fort [3]:

LEMMA 2.1. Let X be a metric spacey be a topological space anfl : ¥ —
K (X) an usco mapping. Then the set of points whéie lower semicontinuous is
aresidual set irv.

LEMMA 2.2. LetX be a metric spacg; be a complete metric space afid ¥ —
K (X) be an usco mapping. Then the set of points wiieielower semicontinuous
is a dense residual set in.

Proof. SinceY is complete, a residual set his dense; the result now follows
from Lemma 2.1. O

Let K be a non-empty closed and convex cone of a Banach siade:- |)
and setC = {f : K — E* :and f is continuous such thab(f, /) :=
sup.cx If(x) — f'(x)||* for each f, f" € C < oo}, where| - ||* denotes the
norm of the dual spacg*. Clearly, p is a metric onC and we have the following
fact.

LEMMA 2.3. The metric spacéC, p) is complete.

Denoted byK (K) the collection of all non-empty compact subsets of the cone
K in (E, | -]). Then we know thaK (K) is a complete metric space endowed with
the Hausdorff metri& (induced from the nornfj - || of E).

LetY := C x K(K) and we define a metri¢ onY by d(y, y') := p(f, f') +
h(A, A’) foreachy = (f, A) andy’ = (f’, A’) € Y. Then itis clear thatY, d) is
also a complete metric space. Ldt:= {y = (f, A) € Y:suchthaGNCP(f, K)
has solutions inA, i.e., SGNCP(f, K, A) # 0}. Then we have the following
result.

LEMMA 2.4. The spacéM, d) is complete.

Proof. SinceM C Y andY is complete, it is sufficient to prove thaf is closed
in Y. Let {y,}>°, be a sequence i andy, — y € Y. Lety, := (fu, A,),
n=12...andy = (f, A). Thenf, — fandA, — A.Foreacm =1,2,...,
sincey, € M, there isx, € A, such thatf,(x,) € K* and (x,, f,(x,)) = 0.
SinceA, andA are compact and,, — A, by A.5.1 (ii) of Mas-Colell [10, p.10],
U™ A, U Ais compact. Since, € A, C U2, A, U A, without loss of generality
we may assume that, — x € U2, A, U A. If x ¢ A, sinceA is compact, there
isa > 0 such that/(a, A) N O(x,a) = #. SinceA,, — A andx, — x, there is
Ny such thatd,, C U(a, A) andx, € O(x, a) for all n > N;, which contradicts
the assumption that, € A,. Hence we must have € A. By the fact thatK* is
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closed, the continuity of and lim,_., f, = f, itis easy to see thaf(x) € K*
and(x, f(x)) = 0. Thereforey = (f, A) € M so thatM is closed inY. O

For eachy = (f, A) € M, we denote by5(y) the solution set of the nonlinear
complementarity problen NCP(f, K) in A, i.e.,S(y) = SGNCP(f, K, A).
Then we have thaf(y) # @. In what follows, we shall also uUSEeNCP(f, K, A)
to denote the generally nonlinear complementarity proldeNC P ( f, K) associ-
ated with solutions in a subsatof the closed and convex coré

LEMMA 2.5. The setS(y) € K(K) for eachy € M.

Proof. The conclusion follows by the definition &f(y), the continuity of f
and the fact thatx,, y,) — (x, y). Here we give its details as follows: Let=
(f, A) € M be given. Since that, — x € UX A, UA.If x ¢ A, sinceA is
compact, there ig > 0 such that (a, A)NO(x, a) = . SinceA,, — A andx, —
x, there isN; such thatA, C U(a, A) andx, € O(x,a) for all n > Ny, which
contradicts the assumption that € A,. Hence we must have € A. Secondly,
by the continuity off, we must also have thaf(x) € K* and (x, f(x)) = O.
Thereforey = (f, A) € M so thatM is closed inY. This completes the proof.0

By Lemma 2.5, the mapping — S(y) defines a solution mappin§ : M —
K (K) and indeed we have the following upper semicontinuity of the mapging

LEMMA 2.6. The solution mapping : M — K (K) is upper semicontinuous on
M.

Proof. Suppose$ is not upper semicontinuous ate M, then there existy > 0
and a sequencg,}°2 ; in M with y, — y such that for each = 1,2, ..., there
existsx, € S(y,) with x, ¢ U(eo, S(y)). Lety, = (f,, A,) andy = (f, A), then
fn— fandA, — A.Sincex, € A, C U2, A, UAandU A, U A is compact,
without loss of generality, we may assume that— x € U2, A, U A. Note that
we must haver ¢ Ul(eg, S(y)). Now the same argument as in the proof of Lemma
2.4 shows thak € A, f(x) € K* and(x, f(x)) = 0, so thatx € S(y). This
contradicts that ¢ U (eg, S(y)). ThereforeS must be upper semicontinuous. This
completes the proof. a

In order to study the stability of solution set for nonlinear complementarity
problems, we now introduce the following notions.

DEFINITION 2.7. LetM; be a non-empty closed subsetMf (then M, is also
complete as so is the spagé). If y = (f, A) € My, then a solution point in
S(y) is said to be aressential solutiorof the nonlinear complementarity prob-
lem GNCP(f, K, A) with respect toM, provided that for ang > 0, there is
8 > 0 such that for any’ = GNCP(f', A") € My withd(y,y) = p(f, ) +
h(A, A") < §, there exists a solution’ € S(y") for the complementarity problem
GNCP(f',K, A" with ||lx — x| < €. The complementarity probleld NC P
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(f, K, A) is said to beessential(with respect toM,) if every x € S(y) is an
essential solution of with respect taVf;.

REMARK 2.1. Definition 2.7 says that if the complementarity probléiC P
(f, K, A) is essential, then for any > 0, there exists & > 0 such that for any
other complementarity probleG@NC P (f’, K, A") with sup,.x{d(f(x), f'(x)) :

x € X} + h(A, A)) < §, having at least on solution’ in the e-neighbourhood
of the solution set oilGNCP(f, K, A); or equivalently to saying, the solution
mappings is continuous at the complementarity probl€fWC P( f, K, A) when

it is essential. Therefore the essential property\Gdf C P(f, K, A) characterizes
the continuous property of its solution setdn

Now we have the following characteristic of stability for solution set of com-
plementarity problems.

THEOREM 2.8. The solution mapping is lower semicontinuous at € M; if
and only ify is essential with respect ;.

Proof. Suppose is lower semicontinuous ate M;. Then for any > 0, there
is§ > 0 such that for any’ € M; with d(y, y') < §, we haveS(y) Cc U(e, S(y))
so that for anyx € S(y), there isx’ € S(y') with d(x,x’) < €. Thus every
x € S(y) is an essential solution of = GNC P(f, K) with respect toM; and
hencey (= GNCP(f, k)) is essential with respect t;.

Conversely, suppose thatis essential with respect ;. If S were not lower
semicontinuous ap € M,, then there exist; > 0 and a sequencgy,};°; in
M with y, — vy such that for eack = 1,2,..., there isx, € S(y) with
x, & U(eo, S(y,)). SinceS(y) is compact, we may assume that— x € S(y).
Sincex is an essential solution of the nonlinear complementarity problesa
GNCP(f, K) with respect toMy, y, — y andx, — x, there isN such that
d(x,,x) < €o/2andx € U(ep/2, S(y,)) foralln > N. Hencex, € O(x, €0/2) C
U (eo, S(y,)) foralln > N which contradicts the assumption that¢ U (eq, S(y,))
foralln =1, 2,.... HenceS must be lower semicontinuous wat O

The following theorem says that each complementarity problem can be arbit-
rarily approximated by an essential complementarity problem.

THEOREM 2.9. The set of essential points with respecMgis a dense residual
set inM;. In particular, every point inM; can be arbitrarily approximated by an
essential point inV/;.

Proof. By Lemma 2.5 and Lemma 2.6,: M — K(K) is an usco mapping.
SinceM; is complete, by Lemma 2.2, the set of points whglis lower semicon-
tinuous is a dense residual setd. By Theorem 2.8, the set of essential points in
M, is a dense residual set M;. O

By combining Lemma 2.6, Theorems 2.8 and 2.9, we have the following result.
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THEOREM 2.10. The solution mapping is continuous ay € M if and only ify
is essential with respect t;. Moreover, the set of points at whishs continuous
is a dense residual set ilf;.

We remark thafS is continuous ay € M, if and only if for eache > 0, there
isé > Osuchthak(S(y), S(y')) < € for eachy’ € M with d(y, y') < §. Theorem
2.8 implies that ify = (f, g, A) € My, theny is essential with respect i, if and
only if its setS(y) of solution points is stableS(y") is close toS(y) whenevery’
is close toy.

We now give a sufficient condition thate M; is essential with respect td;:

THEOREM 2.11. If y € My is such thatS(y) is a singleton set, thenis essential
with respect taV;.

Proof. SupposeS(y) = {x}. By Lemma 2.6S is upper semicontinuous at
Thus for any > 0, there i > 0 such that for each’ € M1, d(y, y') < § implies
S(G) c U(e, S(y)) = O(x, €) sothatS(y) = {x} C U(e, S(y')). This shows that
S is also lower semicontinuous at By Theorem 2.8y is essential with respect to
M;.

In this section, the generic stability results, mainly Theorems 2.9 and 2.10 tell
us that though not all solution sets of complementarity problems have good be-
haviour, however there always exists some complementarity problem with stable
solutions to approximate arbitrarily each of them, this indicates that almost all
complementarity problems are stable in the sense of Baire category theory.

3. The existence of essentially connected components of solution set for
nonlinear complementarity problems

As we have seen in last section, in general not all solutions of complementarity
problems are stable though there exist complementarity problems with essential
solutions to approximate them arbitrarily. In this section, however we will show
that there exists at least one connected component of solution set for each comple-
mentarity problem, which is stable by introducing the concept of essential compon-
ents of solution set for a class of complementarity problems which satisfy so-called
strong Karamardian’s conditioiwhose definition will be given below).

Suppose is a solution of the complementarity problem= GNCP(f, K, A)
€ M, then the component of the solutiane SGNCP(f, K, A) is the union of
all connected subsets 61y) which contain the point. From Engelking [2], we
know that components are connected closed subse&tsydfand thus they are also
compact asS(y) is compact. It is also easy to see that the components of two dis-
tinct points ofS(y) either coincide or are disjoint, so that all components constitute
a decomposition of (y) into connected pairwise disjoint compact subsets, i.e.,

SO = S«

aeA
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whereA is an index set, for ang € A, S,(y) is a nonempty connected compact
and for anyw, 8 € A(a # B), So(y) N Sp(y) = 0.

In order to study the existence of essentially connected components of general-
ized complementarity problems, we first introduce the following definition.

DEFINITION 3.1. For each complementarity problemm= (f, K, A) € M,
suppose the sef(y) = (J,cp Se(y). Then a componens, (y) for somea €

A, is said to be aressential componerdf y if for each open seOD contain-
ing S,(y), there existss > 0 such that for any other complementarity problem
y = GNCP(f',K,A") € Y withd(y,y) = p(f, f) + h(A, A") < §, we have
thatS(y) N O # ¥.

REMARK 3.1. Definition 3.1 above means that even though we could not ex-
pect the continuity for all solutions set of a given complementarity problesm
GNCP(f, K, A), however, there is a case that maybe some component of its
solution set enjoins the continuous stability. In the rest part of this paper, we will
show that the existence of such nice component for each generally complementarity
problemGNCP(f, K, A).

We recall that for given non-empty subsetsand B of a metric space, the
Hausdorff metrich betweenA and B is defined byh(A, B) := inf{e : A C
O(B,e)andB C O(A, ¢)}.

In order to establish our existence theorem of essential components for solu-
tion set of complementarity problems, we first need the following result (see also
Lemma 3.1 of Yu and Luo [11]).

LEMMA 3.2. Let A, B and C be non-empty convex and bounded subsets of a
normed linear spacé&. Thenkh(A, AB + uC) < Mh(A, B) + uh(A, C) whereh
is the Hausdorff metric defined diy & > Oandu > Owith A + u = 1.

Proof. By the definition of Hausdorff metrié (A, B), it suffices to prove that
for any givene; > 0Oand ¢ > Owith B C O(A,¢1) andA C O(B, ¢1), and
C C O(A,e)andA C O(C, €2), we have thad € O(AB + uC, Ae1 + uep) and
AB+uC C O(A, her+uer). Foranya € A,asA C O(B,e¢1)andA C O(C, €p),
there existh € B andc € C such thatd(a, b) < ¢; andd(a, ¢) < €. Note that
A+ =1, it follows that

d(a, Ab + pc) = |la — Ab — pc|| < Alla — b|| + plla — || < rex + uez,

which implies thatA ¢ O(AB + uC, Ae1+ uep). By the convexity ofB andC and
the similar argument used above, we can also verifyilBat- uC C O(A, el +
wuez) and thus the proof is completed. a

In order to establish the general existence of essentially connected components
of solution set for complementarity problems, we introduce some kind of Karamar-
dian’s condition (see Karamardian [8] and also Isac [5, pp. 116-117] and related
references), which is called tl8trong Karamardian Conditioas follows:



102 GEORGE ISAC AND GEORGE XIAN-ZHI YUAN

A continuous functionf : K — E* is said to satisfyStrong Karamardian’s
conditionon K if there exists a compact subsbtof K such that for each €
K\D,{x—y, f(x)) >0forally € D.

Let Y7 be the collection of all complementarity problems satisfying the strong
Karamardian’s condition, i.e.,

Y1:= Ci(K) x {A € K(K) : A D D},

where C1(K) is the collection of all continuous mappings frokh to E* which
satisfy the strong Karamardian's condition above with respect to th® shtis
clear thatY; c Y and the solution seff # SGNCP(y) C D for eachy =
GNCP(f,K, A) € Y, by Lemma 1.1, and thug, is also a subset o¥/.

Now we have the following general existence result of essentially connected
components of solution set for any complementarity problem from the Ejass

THEOREM 3.3. Lety = GNCP(f, K, A) be a given complementarity problem
in Y1. Then there exists at least one essentially connected component of the solution
setS(y).

Proof. For any giveny = GNCP(f, K, A) € Y1, suppose that the solution set
S(y) of the complementarity probledNC P(f, K, A) is decomposed as follows:

S = S«

aeA

where A is an index set, for ang € A, S,(y) is a connected compact and for
anya, B € Ala # B), So(x) N Sg(x) = . We shall prove that there exists at
least one essential componentSxfy). Let us suppose otherwise there is no any
essential connected component. Then for ang A, there exists an open set
0O, D S,(y) such that for ang > 0, there isy, € Y with p(y, y.) < ¢ such that
S(yy) N O, = B. As S(y) is compact, there exist two open and finite coverings
{Vi}i_, and{W;}7_; which satisfy the following conditions:

(D W; CV;

(2) vinV; =@ foreachi # j; and

(3) V; contains at least on&,, (y) with O,, D V; D S, (¥).
Indeed, by following Kinoshita [9], for eacl € A, note thatS, (y) is connected
and compact (thus regular) asg(y) C O,, then there exists non-empty open
subsetsV, and W, of O, such thatS,(y) c V, c V, ¢ W, C O,. Note that
Se(y) N Sg(y) = ¥ for eacha, B € A with o # . Without loss of generality,
we may also assume théit, N Wy = ¢ for eacha, B € A. Then{V,},ca and
{W,}«ca are open coverings df(y). By the compactness ¢f(y), it follows that
there exists: € N such thaf V;}?_, and{W;}_, are open coverings df(y) which
satisfy above conditions (1)—(3).

Now by Lemma 2.6, the solution mappirgyis upper semicontinuous at
andJ'_; W; D S(y) andJ;_, W; is open, then there existséa> 0 such that
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Ui_y W; D S(y') foranyy’ € Y with p(y, y') < 8. Thus there exists,, € Y with
(¥, yo;) < & such thatS(y,,) N Oy, = 0.

Let y = GNCP(f,K,A) and y,, = GNCP((fy.K,A,), Where
i=12,...,n Wedefine a mapping* : K — E* by
f(-x)v IfXEK\U:l:]_‘/M
f*(x) = f(xi(-x)a if x e Wi
A () ) + i (1) fo, (x), if x € Vi\ W,
where
d w.
h(x) = _ (x, W) :
dix, W) +dx, K\U_, V)
and
dx, K\U"_, V)
i (x) = VUi

dx, W) +dx, K \U_, Vi)

By the definition off*, it is easy to verify thayf* is continuous ang'* also satisfies
the strong Karamardian condition, thw§= GNCP(f*, K, A) € Y. Therefore,
S(y*) # ¥. Note thatp(y, y,,) <éfori =1,2,...,n, it follows by Lemma 3.2
that

h(f (o), Ai(x) f(x) + i (x) fo, (X)) < RCf(X), fo (X)).

Thereforep(y, y*) < §andS(y*) C |J:_, W;. Note that for anyo € S(y*), there
is an indexip such thatx, € W;,, and henceg € W;, C Wio C Oy, Therefore,
[*(x0) = fo, (x0) andxg € S(Vary)- This contradicts our assumption thﬁ(ty%) N
O,,, = ¥. Hence there exists at least one essentially connected comport&iy) of
This completes the proof. O

THEOREM 3.4. If the complementarity problemm = GNCP(f,K,A) € Y1
is such that the solution se&t(y) of complementarity problel@ NCP(f, K, A)
is either totally disconnected set, thetWC P (f, K, A) is weakly essential. In
particular, if the solution set otz NCP(f, K, A) is either a singleton, or it is
connected, then the probleGWC P(f, K, A) is essential.

Proof. SinceS(y) is a totally disconnected set, th8fy) = U,ca S, (¢), Where
S«(¢) is a singleton set for eaah € A. By Theorem 3.3, there exists, (¢) =
{xo}, which is an essential component $fy). It is clear thatxg is essential and
thus it is weakly essential. In the case, the solutionSsej is a singleton set or it
is connected, them is is essential by Theorem 3.3 and thus the complementarity
problemGNCP(f, K, A) is essential and the proof is complete. a

REMARK 3.2. Theorems 3.2 and 3.3 tell us that each nonlinear complementarity
problem has, at least, one connected component of its solutions which is stable
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though in general its solution set may not have a good behaviour (i.e., not stable).
Theorem 3.4 tells us that if a complementarity problem has only one connected
solution set, it must be stable. Here we don’t need to require the fungtionbe
either Lipschitz or differentiable.

Finally we also note that by using the same idea used in this paper for the
class of complementarity problems satisfying the strong Karamardian condition,
the general existence results of essentially connected components of solutions for
complementarity problems which satisfy suclkcasrcive, omweakly coercive con-
dition, or some other kinds of coercive conditions (see the book of Hyers et al.
[4, p. 63], or Zeidler [12, p. 472] for their definitions) can be also established,;
and thus we omit all of their details here. Secondly, we can also establish the
existence theory of essentially connected components of solutions sets for a class
of nonlinear complementarity proble@NC P(f, K) in which the functionf is
without anexceptional familyfor its definition, see Bulavski et al. [1], Hyers et al.

[4] or Isac et al. [6]) when its solutions set is contained in a compact sets.

4. Conclusion

In this paper, by introducing notion of essential components, we establish the gen-
eral generic stability theory for nonlinear complementarity problems in the setting
of infinite dimensional Banach spaces. Our first result (i.e., Theorem 2.10) shows
that each nonlinear complementarity problem can be approximated arbitrarily by
a nonlinear complementarity problem which is stable in the sense that the small
change of the objective function results in the small change of its solution set. This
means almost all complementarity problems are stable from viewpoint of Baire
category. Then Theorem 3.3 shows that each nonlinear complementarity problem
has, at least, one connected component of its solutions which is stable, though in
general its solution set may not have good behaviour. This means if a complement-
arity problem has only one connected solution set, it is then always stable without
the assumption that the functions are either Lipschitz or differentiable.
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